Objectives:

- Define definite integrals.
- Find areas under curves using definite integrals.

Definitions: If f is a function defined for $a \leq x \leq b$, we divided the interval $[a, b]$ into n subintervals of equal width

$$
\Delta x=\frac{b-a}{n} .
$$

We let $x_{0}=a, x_{1}, \ldots, x_{n}=b$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be any sample points in these subintervals, so x_{i}^{*} is in the i th subinterval $\left[x_{i-1}, x_{i}\right]$. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided the limit exists. If the limit does exist, we say that f is \qquad integrable on $[a, b]$.

Terminology: Let's break down the notation $\int_{a}^{b} f(x) d x$.

- The symbol \int is called an \quad integral sign
- $f(x)$ is the \qquad
- a and b are the limits of integration
- a is the lower limit of integration and b is the \qquad upper limit of integration
- We call computing an integral integration

Some intuition: The definite integral is computing __ area between the curve and the x-axis but we consider any area above the x-axis is \qquad and any area underneath the x-axis is negative
But wait! Our definition shows that the definite integral is also \qquad the limit of Riemann sums!

Some useful things:

- The sum of the integers from 1 to $n: \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- The sum of the squares of integers from 1 to $n: \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
- The sum of the cubes of integers from 1 to $n: \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}=\frac{n^{2}(n+1)^{2}}{4}$

Example 1 Write down a definite integral that gives the area of the shaded region.

$$
\int_{0}^{10}-\frac{1}{2} x+5
$$

Example 2 Evaluate $\int_{0}^{3} 12-6 t d t$ by drawing a the region and computing the area.

$$
\text { Area }=\frac{1}{2}(2)(12)-\frac{1}{2}(1)(6)=12-3=9
$$

Example 3 Evaluate $\int_{0}^{2} \sqrt{4-x^{2}} d x$ by drawing a the region and computing the area.
$y=\sqrt{4-x^{2}}$ is the upper half of the cicle $x^{2}+y^{2}=4$, which has center $(0,0)$ and radius 2. Taking the integral from 0 to 2 gives the area of the right half of this semicirle. $A=\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi(2)^{2}=\pi$.

Example 4 A table of values of $f(x)$ is given below. Estimate $\int_{0}^{12} f(x) d x$ using Riemann sums.

x	0	3	6	9	12
$f(x)$	32	22	15	11	9

Right Riemann sum with $n=4$:

$$
3 \cdot 22+3 \cdot 15+3 \cdot 11+3 \cdot 9=171
$$

Left Riemann sum with $n=4$:

$$
3 \cdot 32+3 \cdot 15+3 \cdot 11=240
$$

Example 5 Calculate $\int_{0}^{2} x^{3} d x$ exactly using a limit of Riemann sums. We can do this computation in either summation notation or the expanded form.
The right Riemann sum set up: n rectangles; $\Delta x=\frac{2}{n}$; right endpoints: $\frac{2}{n}, \frac{4}{n}, \ldots, \frac{2 n}{n}$; heights: $\left(\frac{2}{n}\right)^{3}, \ldots,\left(\frac{2 n}{n}\right)^{3}$; summation: $\sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{3} \cdot \frac{2}{n}$. Putting all of this together, we can compute our integral:

$$
\begin{aligned}
\int_{0}^{2} x^{3} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{3} \cdot \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2^{3} i^{3}}{n^{3}} \cdot \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2^{4}}{n^{4}} i^{3} \\
& =\lim _{n \rightarrow \infty} \frac{2^{4}}{n^{4}} \sum_{i=1}^{n} i^{3} \\
& =\lim _{n \rightarrow \infty} \frac{2^{4}}{n^{4}}\left(\frac{n^{2}(n+1)^{2}}{4}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2^{2}}{n^{2}}(n+1)^{2} \\
& =\lim _{n \rightarrow \infty} 4 \frac{n^{2}+2 n+1}{n^{2}} \\
& =\lim _{n \rightarrow \infty} 4\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right) \\
& =4 .
\end{aligned}
$$

So the area under the curve x^{3} between $x=0$ and $x=1$ is exactly 4. Cool!

Theorem If $f(x)$ is continuous on $[a, b]$, or if $f(x)$ has only a finite number of jump discontinuities, then f is_ integrable on $[a, b]$, i.e., the definite integral $\int_{a}^{b} f(x) d x$ exists.

Things to note: We have assumed that $a<b$ for defining $\int_{a}^{b} f(x) d x$, but the Riemann sum will allow $a>b$. If $a>b$, then Δx used to be $\frac{b-a}{n}$ and is now $\quad \Delta x=\frac{a-b}{n}$. So we have

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

What if $a=b$? Then $\Delta x=\frac{a-a}{n}=0 \quad$ so

$$
\int_{a}^{a} f(x) d x=0
$$

Properties of Definite Integrals: Let $f(x)$ and $g(x)$ be continuous functions and c some constant number.

1. $\int_{a}^{b} c d x=c(b-a)$
2. $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
3. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
4. $\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$
5. $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$

Example 6 Evaluate $\int_{0}^{2}\left(4+5 x^{3}\right) d x$.

$$
\begin{aligned}
\int_{0}^{2}\left(4+5 x^{3}\right) d x & =\int_{0}^{2} 4 d x+\int_{0}^{2} 5 x^{3} d x \\
& =4 \cdot 2+5 \int_{0}^{2} x^{3} d x \\
& =4 \cdot 2+5 \cdot 4 \\
& =28
\end{aligned}
$$

